
Natural Language
Processing

IFT6758 - Data Science

Sources:
http://demo.clab.cs.cmu.edu/NLP/

http://u.cs.biu.ac.il/~89-680/

And many more …

https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114
http://demo.clab.cs.cmu.edu/NLP/
http://u.cs.biu.ac.il/~89-680/

Announcements

• HM#1 grades are accessible in Gradescope!

• All the mid-term evaluation scores are on the scoreboard! 50 + (5 bonus points) 
- Task explanation: 2 
- Visualization: 3 
- Feature Engineering: 5 
- Approach: 15 
- Result: 10 
- Score on scoreboard: 15 
- Bonus point: 5

• Mid-term presentation are accessible in Gradescope!

• HM#2 grades will be out on Gradescope next week!

• Mid-term exam grades will be announced next week!

• Crash course on DL will be next Thursday! 

!2

Recall: Probabilistic Language
Models

!3

• Goal: Compute the probability of a sentence or sequences of words

• Related task: probability of an upcoming word:

• A model that computes either of the above is called a language
model.

Recall: Parametric Language Model

!4

Representation

• We can represent objects in different hierarchy levels: 
 - Documents 
 - Sentences 
 - Phrases 
 - Words

• We want the representation to be interpretable and
easy-to-use

• Vector representation meets those requirements

!5

Classic NLP word representation

• Problems with classic vector representation:

• Huge – each of dimension |V| (the size of the vocabulary ~)

• Sparse – most entries will be 0

• We want our vectors to be small and dense:

• Similar words have similar vectors: Capture semantic and morphologic
similarity so that the features for “similar” words are “similar” (= their vectors
are close to each other in the vector space)

!6

Learning Dense embeddings

!7

Deerwester, Dumais, Landauer, Furnas, and Harshman, Indexing by latent semantic analysis, JASIS, 1990.
Pennington, Socher, and Manning, GloVe: Global Vectors for Word Representation, EMNLP, 2014.
Mikolov, Sutskever, Chen, Corrado, and Dean, Distributed representations of words and phrases and their compositionality, NIPS, 2013.

Word Embedding via SVD

!8

GloVe

Word2Vec

Two representations

!9

Term-Document Matrix

• This matrix is the basis for computing the similarity between documents and queries

• This representation is used in information retrieval to calculate similarity between
queries and documents

!10

Documents

Words

Term-Document Matrix

• We will decompose the term-document matrix into a product of matrices. 
 

• The particular decomposition we’ll use: singular value decomposition
(SVD).

• We will then use the SVD to compute a new, improved term-document matrix
C′.

• We’ll get better similarity values out of C′(compared to C).

!11

=

Singular Value Decomposition

!12

Word-
document

matrix

Word
embedding

matrix

Embedding of
Documents

C

SVD decomposition

!13

Word
embedding

matrix

Measuring similarity

!14

• Given a term-document matrix C, we can get a decomposition C’ from SVD.

• The singular value decomposition will break C into best rank approximation C’.

Similarity is preserved

!15

C′�C′�T

=

Word embedding via SVD

• Pros:

• Dense vector representation

• Preserves similarity between words

• Cons:

• The purpose of SVD is dimension reduction and it is not designed to learn
the word embeddings

• Computationally expensive

!16

Word Embedding via SVD

!17

GloVe

Word2Vec

GloVe

Global Vectors for Word
Representation (GloVe)

• Glove is based on matrix factorization techniques on the word-context
matrix.

• It first constructs a large matrix of (words x context) co-occurrence
information, i.e. for each “word” (the rows), you count how frequently we see
this word in some “context” (the columns) in a large corpus.

• Uses ratios of co-occurrence probabilities, rather than the co-occurrence
probabilities themselves.

!18

Building a co-occurrence matrix

!19

Corpus = {“I like deep learning”

	 “I like NLP”

	 “I enjoy flying”}

Context = previous word and
next word

Intuition

!20

Selected co-occurrence probabilities from a 6 billion token corpus

GloVe: Formal definition

• Let’s formulate this idea mathematically and then develop an intuition for it.
Let Xij encodes important global information about the co-occurrence
between i and j.

• Our aim will be to learn word vectors which complies with computed
probability on entire corpus. Essentially we are saying that we want word
vectors vi and vj such that is faithful to the globally computed P (j|i).

!21

• log(Xi) and log(Xj) depend only on the words i & j and we can think of them as
word specific biases which will be learned. Formulate this problem in
following way.

!22

GloVe: Formal definition

• log(Xi) and log(Xj) depend only on the words i & j and we can think of them as
word specific biases which will be learned. Formulate this problem in
following way.

!23

GloVe: Formal definition

weights of all the co-occurrences are equal?
Weight should be defined in such a manner that neither rare or frequent
words are over-weighted.

• log(Xi) and log(Xj) depend only on the words i & j and we can think of them as
word specific biases which will be learned. Formulate this problem in
following way.

!24

GloVe: Formal definition

weights of all the co-occurrences are equal?

GloVe

• Pros:

• Provide dense vector

• Easier/cheaper than SVD to compute

• Extract semantic similarity between words

• Pre-trained models are available online.

• Cons:

• Computationally heavy and requires a lot of memory

!25

Word Embedding via SVD

!26

GloVe

Word2Vec

GloVe

Word2Vec

• Models for efficiently creating word embeddings

• Remember: our assumption is that similar words appear with similar
context

• Intuition: two words that share similar contexts are associated with vectors
that are close to each other in the vector space

!27

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean, 2013. Distributed representations of words and phrases and theircompositionality. In
Advances in neural information processing systems.

Word2Vec Embedding methods

!28

CBOW version

Skip-gram version

Main Goal

!29

CBOW : Continuous bag-of-word 
(high level)

• Goal: Predict the middle word given the words of the context

!30

The resulting
projection matrix 𝑃 is
the embedding matrix

Skip-gram 
(high level)

• Goal: Predict the context words given the middle word

!31

The resulting
projection matrix 𝑃 is
the embedding matrix

• Making context and target word pairs depends on the window size you take.

• To make the pairs, you need to look to the left and right of the context word for

as many as window size words.

!32

Training data

e.g.,  
window size = 2

Architecture

100k

100k

!33

Extract Word embedding

!34

The rows of the hidden layer weight/projection matrix, are actually the word vectors
(word embeddings).

One-hot-
vector of a

word

If you multiply a 1 x 100,000 one-hot vector by a 100,000 x 300 matrix, it will effectively
just select the matrix row corresponding to the ‘1’.

Hidden
layer

Word
embedding

10
0k

 w
or

ds

10
0k

 w
or

ds

How to works?

• This is semi-supervised learning because we don’t have the direct labels
associated with the words but we use the neighboring words (of a context
word in a sentence) as the labels. How it works?

• Softmax activation function: is a function that takes as input a vector
of K real numbers, and normalizes it into a probability distribution consisting
of K probabilities proportional to the exponentials of the input numbers

!35

http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

https://en.wikipedia.org/wiki/Probability_distribution
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

Skip-gram: Formal definition

• Vector representations will be useful for predicting the surrounding words.

• Formally: Given a sequence of training words , the objective of
the Skip-gram model is to maximize the average log probability:

• The basic Skip-gram formulation defines using the softmax
function:

!36

Negative Sampling
(Technical details)

• Recall that for Skip-gram we want to maximize the average log probability:

• Which is equivalent to minimizing the cross-entropy loss:

• This is extremely computational-expensive, as we need to update all the
parameters of the model for each training example…

!37

Negative Sampling
(Technical details)

• When looking at the loss obtained from a single training example, we get:

• When using negative sampling, instead of going through all the words in the
vocabulary for negative pairs, we sample a modest amount of 𝑘 words
(around 5-20). The exact objective used:

!38

Context Sampling
(Technical details)

• We want to give more weight to words closer to our target word

• For a given window size C, we sample R in [1, C] and try to predict only R
words before and after our target word

• For each word in the training we need to perform 2*R word classifications (R
is not fixed)

!39

• In order to eliminate the negative effect of very frequent words such as “in”, “the”
etc. (that are usually not informative), a simple subsampling approach is used.

• Each word 𝑤 in the training set is discarded with probability:

where 3/4 is the value found by taking experiments; f(w) is the frequency of the
word in the corpus. This way frequent words are discarded more often.

• This method improves the training speed and makes the word representations
significantly more accurate

Subsampling of Frequent Words
(Technical details)

!40

Hierarchical softmax
(Technical details)

• So one option is to use hierarchical
softmax, representing the vocabulary
as a Huffman binary tree (more
common words being closer to the
root), which reduces the complexity
to O(log(V)).

!41

• There exists a unique path from the root node to a leaf node.

• In effect, the task gets formulated to the probability of predicting a word is
the same as predicting the correct unique path from the root node to that
word.

• The size of the vocabulary can be quite large — datasets vocabulary size ranges
between 30K, 82K, and 1M — which, iff implemented in the naive way, causes
the output layer to become a bottleneck.

•

Regularities

!42

vector[Queen] = vector[King] - vector[Man] + vector[Woman]

Regularities

!43

Visualization in word space

!44

Word2Vec

!45

• Pros:

• Provide dense vector

• Faster to train than GolVe

• Extract semantic similarity between words

• Pre-trained models are available online.

• Cons:

• Cannot capture global context

• It is not clear how to represent a sentence/document with word2vec

Summary

• Skip Gram works well with small amount of data and is found to represent rare words
well. On the other hand, CBOW is faster and has better representations for more
frequent words.

• GloVe uses a lot of memory but unlike Word2Vec consider global context as well as local
context.

• GloVe optimizes directly so that the dot product of two word vectors equals the log of
the number of times the two words will occur near each other.

• Word2Vec extracts the embeddings from a neural network that is designed to perform a
surrogate task (predicting neighbouring words)

• GloVe and Word2Vec outperform each other on various tasks and there is no clear
winner in terms of performance. Probably depends on the data/task.

• You can train your own word vector based on your own corpus using both approaches.

!46

Word Embedding methods

• Benefits:

• Learns features of each word on its own, given a text corpus.

• No heavy preprocessing is required, just a corpus.

• Word vectors can be used as features for lots of supervised

• learning applications: POS, named entity recognition (NER), chunking,
semantic role labeling with pretty much the same network
architecture

• Captures similarities and linear relationships between word vectors.

!47

Bias in embeddings

!48

The occupations with the highest female-biased scores (left) and the highest
male-biased scores (right):

https://developers.googleblog.com/2018/04/text-embedding-models-contain-bias.html

https://developers.googleblog.com/2018/04/text-embedding-models-contain-bias.html

Bias in embeddings

!49

Difference in average sentiment scores:

https://developers.googleblog.com/2018/04/text-embedding-models-contain-bias.html

https://developers.googleblog.com/2018/04/text-embedding-models-contain-bias.html

Other Word Embedding approaches?

• Static word embeddings

• Word2Vec (Google): https://code.google.com/archive/p/word2vec/

• GloVe (Stanford): https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/

• Dynamic word embeddings

• ELMO: https://allennlp.org/elmo

• FlairEmbeddings: https://github.com/zalandoresearch/flair

• BERT: https://pypi.org/project/bert-embedding/

!50

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://allennlp.org/elmo
https://github.com/zalandoresearch/flair
https://pypi.org/project/bert-embedding/

Representation learning

• Representation learning is a set of techniques that learn a feature: a
transformation of the raw data input to a representation that can be
effectively exploited in machine learning tasks.

• Part of feature engineering/learning.

• Get rid of “hand-designed” features and representation

• Unsupervised feature learning - obviates manual feature engineering

!51

!52

Difference between classical NLP
and Deep learning NLP

Neural network language model

!53

More on NN language modelling

!54

Convolutional Neural Networks (CNNs) Recurrent Neural Networks (RNNs)

Next Thursday!

https://en.wikipedia.org/wiki/Convolutional_neural_network

Resources

!55

• Live demo: https://ronxin.github.io/wevi/

• Language modeling: https://web.stanford.edu/class/cs124/lec/
languagemodeling.pdf

• C. Manning- Human Language & vector words: http://videolectures.net/
deeplearning2015_manning_language_vectors/

• K. Cho - Deep Natural Language Understanding: http://videolectures.net/
deeplearning2016_cho_language_understanding/

• John Arevalo, Language modeling and word embeddings

https://ronxin.github.io/wevi/
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
http://videolectures.net/deeplearning2015_manning_language_vectors/
http://videolectures.net/deeplearning2015_manning_language_vectors/
http://videolectures.net/deeplearning2016_cho_language_understanding/
http://videolectures.net/deeplearning2016_cho_language_understanding/
http://videolectures.net/deeplearning2016_cho_language_understanding/

Conferences focusing on NLP

• Natural Language Processing 
ACL, NAACL, EACL, EMNLP, CoNLL, Coling, TACL 
 

• Machine learning 
ICML, NIPS, ECML, AISTATS, ICLR, JMLR, MLJ  
 

• Artificial Intelligence 
AAAI, IJCAI, UAI, JAIR

!56

