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Data are not Oil



Data are Desserts!
1. Data are the result of deliberate human intervention
2. Data are varied across domains
3. Data are varied within domains
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Data Wrangling
Data (+ people who collect them) are varied

→ Some amount of preparation is always needed.

Readings
How to share data with a statistician
Tidy Data
Tidy Data in Python

https://github.com/jtleek/datasharing
https://www.jstatsoft.org/article/view/v059i10
https://www.jeannicholashould.com/tidy-data-in-python.html


Data Wrangling
Data (+ people who collect them) are varied

→ Some amount of preparation is always needed.

This is *before* you prepare your deliverables,

- Prediction tools
- Model summaries
- Figures and reports

which inform understanding and decision making.



Walkthrough
You just got a dataset! You should

- Understand what the variables are
- Manage column types
- Handle missing values
- Join, reorganize, and tidy

The data don’t arrive on our doorstep as “X”.                        .sa
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Data Dictionary + Code Book
- What do the tables mean?
- What do the columns mean?
- How were the data collected?



Managing types
- Data come in different “types”

- Numeric, (ordered) categorical, dates, (positive) integers
- It’s valuable to ensure consistency with what you were expecting. (why?)

You’ll see many more 
examples in practicals + 
HW + project.

What do you need to 
change?

https://www.kaggle.com/chicago/chicago-taxi-trips-bq


Managing types: Dates
- You can use the datetime package and pandas’ to_datetime
- Lets you convert arbitrary strings into datetime objects

"22-01-2019T15:00:02" datetime.datetime(2019, 1, 22, 15, 0, 2)



Managing types: Dates
- You can use the datetime package and pandas’ to_datetime
- Lets you convert arbitrary strings into datetime objects

"22-01-2019T15:00:02" datetime.datetime(2019, 1, 22, 15, 0, 2)

Once it’s a datetime, you can derive 
new features.



Managing types: Categoricals
There are three common issues,

- The number of levels is overwhelming
- A single categorical might encode multiple pieces of information
- The levels might not be consolidated
- You might want to convert into numerical vectors
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Managing types: Categoricals
There are three common issues,

- The number of levels is overwhelming
- A single categorical might encode multiple pieces of information
- The levels might not be consolidated
- You might want to convert into numerical vectors

vegetable

potato

carrot

potato

vegetable

POTATO

carrot

potato



Managing types: Categoricals
There are three common issues,

- The number of levels is overwhelming
- A single categorical might encode multiple pieces of information
- The levels might not be consolidated
- You might want to convert into numerical vectors

Happy?

yes

yes

no

maybe

no

yes no maybe

1 0 0

1 0 0

0 1 0

0 0 1

0 1 0



Missing Values
- Not always properly read in
- Difference between structural and stochastic missingness
- Necessary for proper inference downstream



Joining, Reorganizing and Tidying
- We want a unified X
- May not happen because

- The columns are stored across tables
- The rows are written to different files

- May need to link to nontabular signals
- Images, polygons, audio, ...
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- We want a unified X
- May not happen because
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- The rows are written to different files

- May need to link to nontabular signals
- Images, polygons, audio, ...

I sometimes have nightmares about 
relational databases.



Joining, Reorganizing and Tidying
- We want a unified X
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Or if you’re in really bad luck, across 
different directories.
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If this sounds painful...
- Be patient, “the data are imperfect, as are we.”

http://giorgialupi.com/data-humanism-my-manifesto-for-a-new-data-wold


If this sounds painful...
- Persist, it will get easier and you can do the fun stuff

https://www.scq.ubc.ca/so-much-candy-data-seriously/

