
Deep Learning
IFT6758 - Data Science

Sources:
 http://www.cs.cmu.edu/~16385/

�1

http://cs231n.stanford.edu/syllabus.html

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

https://www.cs.ubc.ca/labs/lci/mlrg/slides/rnn.pdf

https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114
http://demo.clab.cs.cmu.edu/NLP/
http://www.cs.cmu.edu/~16385/
http://cs231n.stanford.edu/syllabus.html
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Announcements

• Grades of Assignment 2 is published on Gradescope!

• Check Evaluation 7, the scores are on scoreboard!

• Grade of mid-term will be published on Gradescope by the end of this week!

• Homework 3 is on Gradescope and it is due on November 28.

• Homework 4 will be published on Gradescope on Monday.

!2

Crash Course to Deep Learning
1950s Age of the Perceptron

1980s Age of the Neural Network

2010s Age of the Deep Network

1969 Perceptrons (Minsky, Papert)

2000s Age of the Support Vector Machine

1957 The Perceptron (Rosenblatt)

1990s Age of the Graphical Model

1986 Back propagation (Hinton)

deep learning = known algorithms + computing power + big data

!3

Perceptron

inputs

weights

output

sum sign function
(Heaviside step function)

!4

Inspiration from Biology

Neural nets/perceptrons are loosely inspired by
biology.

But they certainly are not a model of how the
brain works, or even how neurons work.

!5

N-d binary vector

perceptron is just one line of code!

sign of zero is +1

!6

initialized to 0

 7

observation (1,-1)
label -1

 8

= 1

observation (1,-1)
label -1

 9

observation (1,-1)
label -1

 10

update w

observation (1,-1)
label -1

 11

update w

observation (1,-1)
label -1

-1 1(1,-1)(0,0)(-1,1)

no match!

 12

observation (-1,1)
label +1

(-1,1)

 13

observation (-1,1)
label +1

= 1
(-1,1)

(-1,1) (-1,1)

 14

observation (-1,1)
label +1

= 1
(-1,1)

(-1,1) (-1,1)

 15

update w

observation (-1,1)
label +1

update w

+1 0(-1,1)(-1,1)(-1,1)

match!

 16

 17

update w

 18

update w

 19

 20

update w

 21

inputs

weights

output

sum sign function
(e.g., step,sigmoid, Tanh, ReLU)

bias

Perceptron

!22

inputs

weights

output

Activation Function
(e.g., Sigmoid function of weighted sum)

(1) Combine the sum
and activation function

(2) suppress the bias
term (less clutter)

Perceptron

 23

output

float perceptron(vector<float> x, vector<float> w)
{

float a = dot(x,w);
return f(a);

}

float f(float a)
{

return 1.0 / (1.0+ exp(-a));
}

Activation function (sigmoid, logistic function)

Perceptron function (logistic regression)

Programming the 'forward pass'

 24

Neural Network

a collection of connected perceptrons
Connect a bunch of perceptrons together …

!25

Neural Network

a collection of connected perceptrons
Connect a bunch of perceptrons together …

How many perceptrons in this neural network?
!26

Neural Network

a collection of connected perceptrons
Connect a bunch of perceptrons together …

‘two perceptrons’

‘three perceptrons’

‘four perceptrons’

‘one perceptron’

!27

Neural Network

a collection of connected perceptrons
Connect a bunch of perceptrons together …

‘five perceptrons’

‘six perceptrons’

!28

‘output’ layer

Neural Network

…also called a Multi-layer Perceptron (MLP)

‘input’ layer
‘hidden’ layer

!29

this layer is a
‘fully connected layer’

all pairwise neurons between layers are connected
 30

so is this

all pairwise neurons between layers are connected
 31

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

 32

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

 33

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20

 34

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20

20 + 4 + 2 = 26
bias terms

 35

performance usually tops out at 2-3 layers,
deeper networks don’t really improve performance...

...with the exception of convolutional networks for images

 36

How to train perceptrons?

!37

world’s smallest perceptron!

What does this look like?

 38

(a.k.a. line equation, linear regression)

world’s smallest perceptron!

 39

Given a set of samples and a Perceptron

Estimate the parameters of the Perceptron

Learning a Perceptron

 40

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

 41

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …

 42

Given several examples

An Incremental Learning Strategy  
(gradient descent)

and a perceptron

 43

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

An Incremental Learning Strategy  
(gradient descent)

 44

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

perceptron
output

true
label

perceptron
parameter

An Incremental Learning Strategy  
(gradient descent)

 45

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

perceptron
output

true
label

perceptron
parameter

An Incremental Learning Strategy  
(gradient descent)

what does
this mean?

 46

Loss Function
defines what is means to be

close to the true solution

 YOU get to chose the loss function!
(some are better than others depending on what you want to do)

Before diving into gradient descent, we need to understand …

 47

Squared Error (L2)
(a popular loss function) ((why?))

 48

L1 Loss L2 Loss

Zero-One Loss Hinge Loss

 49

back to the…

function of ONE parameter!

(a.k.a. line equation, linear regression)

world’s smallest perceptron!

 50

Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Learning a Perceptron

what is this
activation function?

 51

Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Learning a Perceptron

what is this
activation function? linear function!

 52

Given several examples

Modify weight such that gets ‘closer’ to

Learning Strategy  
(gradient descent)

and a perceptron

perceptron
output

true
label

perceptron
parameter

 53

Code to train your perceptron:

just one line of code!

!54

Gradient descent

(partial) derivatives tell us how
much one variable affects another

!55

Given a fixed-point on
a function,

move in the direction
opposite of the

gradient

Gradient descent

!56

Gradient descent

update rule:

!57

Backpropagation

!58

World’s Smallest Perceptron!

back to the…

function of ONE parameter!
(a.k.a. line equation, linear regression)

 59

Training the world’s smallest perceptron

this should be the
gradient of the loss

function

Now where does this come from?

This is just gradient
descent, that means…

 60

…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…

 61

Compute the derivative

That means the weight update for gradient descent is:

just shorthand

move in direction of negative gradient

 62

Gradient Descent (world’s smallest perceptron)

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

 63

Training the world’s smallest perceptron

 64

world’s (second) smallest
perceptron!

function of two parameters!

 65

Gradient Descent

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

we just need to compute partial
derivatives for this network

 66

Derivative computation

Why do we have partial derivatives now?

 67

Derivative computation

Gradient Update

 68

Gradient Descent

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
(adjustable step size)

two lines now

(side computation to track loss.
not needed for backprop)

 69

We haven’t seen a lot of ‘propagation’ yet
because our perceptrons only had one layer…

 70

Multi-layer perceptron

function of FOUR parameters and FOUR layers!

 71

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

 72

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

 73

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

 74

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

 75

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

 76

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

 77

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

 78

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

 79

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

 80

Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:

 81

Entire network can be written out as a long equation

What is known? What is unknown?

known

We need to train the network:

 82

Entire network can be written out as a long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function
sometimes has

parameters

 83

Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP

 84

Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives

 85

So we need to compute the partial derivatives

 86

how

…this
this

does
affect…

Partial derivative describes…

So, how do you compute it?

(loss layer)

Remember,

 87

The Chain Rule

!88

rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…

 89

rest of the network

Chain Rule!

 90

rest of the network

Just the partial
derivative of L2 loss

 91

rest of the network

Let’s use a Sigmoid function

 92

rest of the network

Let’s use a Sigmoid function

 93

rest of the network

 94

 95

already computed.
re-use (propagate)!

 96

The Chain Rule

a.k.a. backpropagation

 97

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

 98

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

already computed.
re-use (propagate)!

 99

depends ondepends on
depends on

depends ondepends on

depends on

depends on

 100

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
 101

vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
 102

Stochastic gradient descent

 103

What we are truly minimizing:

min
θ

𝑁

∑
𝑖=1

𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))

The gradient is:

 104

What we are truly minimizing:

min
θ

𝑁

∑
𝑖=1

𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))

The gradient is:

𝑁

∑
𝑖=1

𝜕𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))
𝜕θ

What we use for gradient update is:

 105

What we are truly minimizing:

min
θ

𝑁

∑
𝑖=1

𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))

The gradient is:

𝑁

∑
𝑖=1

𝜕𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))
𝜕θ

What we use for gradient update is:

𝜕𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))
𝜕θ for some i
 106

vector of parameter update equations

vector of parameter partial derivatives

Stochastic Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
 107

How do we select which sample?

• Select randomly!

Do we need to use only one sample?

• You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

• It’s very expensive when N is large (big data).

Do I lose anything by using stochastic GD?
• Same convergence guarantees and complexity!
• Better generalization.

 108

Convolution Neural Networks 
(ConvNet)

!109

Convolution Neural Networks

!110

Motivation

 111

Recap: Before Deep Learning

Input
Pixels

Extract
Features

Figure: Karpathy 2016

Concatenate into
a vector x

SVM

Linear
Classifier

Ans

 112

The last layer of (most) CNNs are linear
classifiers

Input
Pixels

Ans

Perform everything with a big neural
network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable

(GoogLeNet)

 113

 114

 115

 116

ConvNets
They’re just neural networks with  

3D activations and weight sharing

 117

 118

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

 144

 145

ConvNet

 146

ConvNet

 147

ConvNet

 148

ConvNet

 149

ConvNet

 150

ConvNet

 151

ConvNet

 152

ConvNet

CNNs Notations

 153

Padding

Stride

Pooling

Stride

 154

https://github.com/vdumoulin/conv_arithmeticAnimations:

https://github.com/vdumoulin/conv_arithmetic

 155

Stride

 156

Stride

 157

Stride

 158

Stride

 159

Stride

 160

Stride

 161

Stride

 162

Stride

 163

Stride

 164

Stride

 165

Stride

CNNs Notations

 166

Padding

Stride

Pooling

Padding

 167

Full padding

Same padding

No padding

 168

Padding

 169

Padding

 170

Padding

 171

Padding

 172

How big is the output?

 173

How big is the output?

 174

Other variations?

DilationTransposed

https://arxiv.org/abs/1603.07285More info? Check this

https://arxiv.org/abs/1603.07285

CNNs Notations

 175

Padding

Stride

Pooling

Pooling

 176

 177

Pooling

• \

 178

Pooling

 179

Max Pooling

 180

 181

Example ConvNet

Hierarchical Feature representation

 182

Visual embedding
(Img2Vec)

 183

Feature extraction part Classification part

A ‘feature vector’ of an image is simply a list of numbers taken from the output of a neural
network layer.  
This vector is a dense representation of the input image, and can be used for a variety of
tasks such as ranking, classification, or clustering.

How to train ConvNets?

!184

 185

How to train ConvNets?

 186

How to train ConvNets?

 187

Mini-batch Gradient Decent

 188

Regularization

 189

Regularization

 190

1) Data pre-processing

 191

1) Data pre-processing

 192

1) Data pre-processing

 193

1) Data pre-processing
Here are few tricks used by the AlexNet team.

Without data augmentation,
the authors would not have
been able to use such a
large network because it
would have suffered from
substantial overfitting.

 194

2) Choose your architecture

 195

3) Initialize your weights

 196

4) Find a learning rate

 197

4) Find a learning rate

 198

4) Find a learning rate

 199

4) Find a learning rate

 200

4) Find a learning rate

 201

What to fiddle?

 202

 203

Dropout

Dropout is yet another approach to reduce overfitting!

When a neuron is dropped, it does not contribute to either forward or backward
propagation. So every input goes through a different network architecture, as
shown in the animation. As a result, the learnt weight parameters are more robust
and do not get overfitted easily.

 204

Dropout

During testing, there is no dropout and the whole network is used.

 205

Dropout

 206

Dropout

 207

Transfer Learning

 208

Transfer Learning

Recurrent Neural Networks

 209

Neural Network

 210

Temporal dependencies

 211

 212

Sequential Data

• Sometimes the sequence of data matters.

• Text generation

• Stock price prediction

• For example: The clouds are in the ?
• sky

 213

Sequential Data

• Sometimes the sequence of data matters.

• Text generation

• Stock price prediction

• For example: The clouds are in the ?
• sky

• Simple solution: N-grams?

• Hard to represent patterns with more than a few words

(possible patterns increases exponentially)

 214

Sequential Data

• Sometimes the sequence of data matters.

• Text generation

• Stock price prediction

• For example: The clouds are in the ?
• sky

• Simple solution: N-grams?

• Hard to represent patterns with more than a few words

(possible patterns increases exponentially)

• Simple solution: Neural networks?

• Fixed input/output size

• Fixed number of steps

 215

 216

Time-delay neural network

Recurrent neural networks

• Recurrent neural networks (RNNs) are networks with loops,
allowing information to persist [Rumelhart et al., 1986].

• Have memory that keeps track of information observed so far

• Maps from the entire history of previous inputs to each output

• Handle sequential data

 217

Neural Networks

 218

Recurrent Neural Networks

 219

Recurrent Neural Networks

 220

Recurrent Neural Networks

 221

Recurrent Neural Networks

 222

 223

Recurrent neural networks

Recurrent neural networks

We can process a sequence of vectors x by applying a recurrence formula
at every time step:

Notice: the same function and the same set
of parameters are used at every time step.

 224

 225

Recurrent neural networks

RNN: Computational Graph

 226

RNN: Computational Graph

 227

RNN: Computational Graph

 228

RNN: Computational Graph

 229

First words get transformed into machine-readable vectors. Then the RNN
processes the sequence of vectors one by one.

Animations by Michael Nguyen)

The hidden state acts as the neural networks internal memory. It holds
information on previous data the network has seen before.

 230

RNN: Computational Graph

Animations by Michael Nguyen)

 231

RNN: Computational Graph

RNN: Computational Graph:  
Many to One

 232

 233

RNN: Computational Graph:  
One to Many

Sequence to Sequence: Many-to-one +
one-to-many

 234

How to train RNNs?

 235

Back-Propagation Through Time (BPTT)

 236

BPTT

 237

Truncated BPTT

 238

Truncated BPTT

 239

Truncated BPTT

 240

 241

How does gradient flow in RNN?

RNN Gradient Flow

 242

Why the activation function is Tanh?

• The tanh activation is used to help regulate the values flowing through the
network. The tanh function squishes values to always be between -1 and 1.

 243

Animations from Michael Nguyen

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------

 244

RNN Gradient Flow

 245

RNN Gradient Flow

 246

RNN Gradient Flow

 247

RNN Gradient Flow

 248

RNN Gradient Flow

0

The Problem of Long-term
Dependencies

 249

Short-Term memory

• RNNs suffer from what is known as short-term memory!

 250

 251

RNN Gradient Flow

0

Long Short-Term Memory Networks
(LSTM)

 252

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997

Long Short-Term Memory Networks

• Long Short-Term Memory (LSTM) networks are RNNs capable of
learning long-term dependencies [Hochreiter and Schmidhuber, 1997].

– A memory cell using logistic and linear units with multiplicative
interactions:

– Information gets into the cell whenever its input gate is on.

– Information is thrown away from the cell whenever its forget gate is off.

– Information can be read from the cell by turning on its output gate

 253

Notation

 254

Memory cell

forget gate Output gateInput gate

LSTM overview

 255

Memory Cell

 256

Gates

 257

Sigmoid activation function

• Gates contains sigmoid activations. A sigmoid activation is similar to the tanh
activation. Instead of squishing values between -1 and 1, it squishes values
between 0 and 1.

• That is helpful to update or forget data because any number getting multiplied by
0 is 0, causing values to disappears or be “forgotten.” Any number multiplied by 1
is the same value therefore that value stay’s the same or is “kept.”

 258

Animations from Michael Nguyen

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------

Forget Gate

 259

 260

Forget Gate

Animations from Michael Nguyen

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------

Input Gate

 261

 262

Input Gate

Animations from Michael Nguyen

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------

Vector of New Candidate Values

 263

Memory Cell Update

 264

 265

Memory Cell Update

Animations from Michael Nguyen

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------

Output Gate

 266

Output Update

 267

 268

Output Update

Animations from Michael Nguyen

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------

 269

How does gradient flow in LSTM?

 270

Long Short-Term Memory Networks
(LSTM)

LSTM Gradient Flow

 271

 272

LSTM Gradient Flow

The gradient behaves similarly to the forget gate, and if the forget gate decides that a
certain piece of information should be remembered, it will be open and have values
closer to 1 to allow for information flow.

RNN vs. LSTM

 273

Variants on LSTM

 274

 275

Variants on LSTM

 276

Variants on LSTM

Summary

• RNNs allow a lot of flexibility in architecture design

• Vanilla RNNs are simple but don’t work very well

• Common to use LSTM or GRU: their additive interactions

improve gradient flow

• Backward flow of gradients in RNN can explode or vanish.

• Exploding is controlled with gradient clipping. Vanishing is

controlled with additive interactions (LSTM)

• Better/simpler architectures are a hot topic of current research

• Better understanding (both theoretical and empirical) is needed

 277

Application: Image Captioning

 278

[1] Kyunghyun Cho et al. “Learning phrase representations using
RNN encoder-decoder for statistical machine translation”. In:
arXiv preprint arXiv:1406.1078 (2014).

[2] Felix A Gers and Jurgen Schmidhuber. “Recurrent nets that time
and count”. In:
Neural Networks, 2000. IJCNN 2000. Vol. 3.
IEEE. 2000, pp. 189–194.

[3] Sepp Hochreiter and Jurgen Schmidhuber. “Long short-term
memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.
[4] David E Rumelhart et al. “Sequential thought processes in PDP
models”. In:
V 2 (1986), pp. 3–57.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.youtube.com/watch?v=56TYLaQN4N8&index=14&list=PLE6Wd9FR--
EfW8dtjAuPoTuPcqmOV53Fu

!279

Additional resources

• Basic reading: No standard textbooks yet! Some good resources:
• https://sites.google.com/site/deeplearningsummerschool/

• http://www.deeplearningbook.org/

• http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

!280

Additional resources

https://sites.google.com/site/deeplearningsummerschool/
http://www.deeplearningbook.org/
http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

