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Announcements

• Grades of Assignment 2 is published on Gradescope!


• Check Evaluation 7, the scores are on scoreboard!


• Grade of mid-term will be published on Gradescope by the end of this week!


• Homework 3 is on Gradescope and it is due on November 28. 


• Homework 4 will be published on Gradescope on Monday.
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Crash Course to Deep Learning
1950s Age of the Perceptron

1980s Age of the Neural Network

2010s Age of the Deep Network

1969 Perceptrons (Minsky, Papert)

2000s Age of the Support Vector Machine

1957 The Perceptron (Rosenblatt)

1990s Age of the Graphical Model

1986 Back propagation (Hinton)

deep learning = known algorithms + computing power + big data
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Perceptron

inputs

weights

output

sum sign function
(Heaviside step function)
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Inspiration from Biology

Neural nets/perceptrons are loosely inspired by 
biology. 

But they certainly are not a model of how  the 
brain works, or even how neurons work.
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N-d binary vector

perceptron is just one line of code!

sign of zero is +1
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initialized to 0

 7



observation (1,-1)
label -1

 8



= 1

observation (1,-1) 
label -1
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observation (1,-1) 
label -1
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update w

observation (1,-1) 
label -1
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update w

observation (1,-1) 
label -1

-1 1(1,-1)(0,0)(-1,1)

no match!
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observation (-1,1)
label +1

(-1,1)
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observation (-1,1)
label +1

= 1
(-1,1)

(-1,1) (-1,1)
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observation (-1,1)
label +1

= 1
(-1,1)

(-1,1) (-1,1)
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update w

observation (-1,1)
label +1

update w

+1 0(-1,1)(-1,1)(-1,1)

match!
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update w
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update w

 19



 20



update w
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inputs

weights

output

sum sign function
(e.g., step,sigmoid, Tanh, ReLU)

bias

Perceptron
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inputs

weights

output

Activation Function
(e.g., Sigmoid function of weighted sum)

(1) Combine the sum 
and activation function 

(2) suppress the bias 
term (less clutter)

Perceptron
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output

float perceptron(vector<float> x, vector<float> w) 
{ 

float a  = dot(x,w);  
return f(a); 

}

float f(float a)  
{ 

return 1.0 / (1.0+ exp(-a)); 
}

Activation function (sigmoid, logistic function)

Perceptron function (logistic regression)

Programming the 'forward pass'
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Neural Network

a collection of connected perceptrons
Connect a bunch of perceptrons together …
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Neural Network

a collection of connected perceptrons
Connect a bunch of perceptrons together …

How many perceptrons in this neural network?
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Neural Network

a collection of connected perceptrons
Connect a bunch of perceptrons together …

‘two perceptrons’

‘three perceptrons’

‘four perceptrons’

‘one perceptron’
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Neural Network

a collection of connected perceptrons
Connect a bunch of perceptrons together …

‘five perceptrons’

‘six perceptrons’
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‘output’ layer

Neural Network

…also called a Multi-layer Perceptron (MLP)

‘input’ layer
‘hidden’ layer
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this layer is a 
‘fully connected layer’

all pairwise neurons between layers are connected
 30



so is this

all pairwise neurons between layers are connected
 31



How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?
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How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6
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How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20
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How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20

20 + 4 + 2 = 26
bias terms

 35



performance usually tops out at 2-3 layers,  
deeper networks don’t really improve performance...

...with the exception of convolutional networks for images
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How to train perceptrons?
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world’s smallest perceptron!

What does this look like?

 38



(a.k.a. line equation, linear regression)

world’s smallest perceptron!
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Given a set of samples and a Perceptron

Estimate the parameters of the Perceptron

Learning a Perceptron
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What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:
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What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …
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Given several examples 

An Incremental Learning Strategy  
(gradient descent)

and a perceptron
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Given several examples 

Modify weight        such that gets ‘closer’ to 

and a perceptron

An Incremental Learning Strategy  
(gradient descent)
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Given several examples 

Modify weight        such that gets ‘closer’ to 

and a perceptron

perceptron 
output

true 
label

perceptron 
parameter

An Incremental Learning Strategy  
(gradient descent)
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Given several examples 

Modify weight        such that gets ‘closer’ to 

and a perceptron

perceptron 
output

true 
label

perceptron 
parameter

An Incremental Learning Strategy  
(gradient descent)

what does 
this mean?
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Loss Function  
defines what is means to be  

close to the true solution

 YOU get to chose the loss function!
(some are better than others depending on what you want to do)

Before diving into gradient descent, we need to understand …
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Squared Error (L2) 
(a popular loss function) ((why?))
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L1 Loss L2 Loss

Zero-One Loss Hinge Loss
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back to the…

function of ONE parameter!

(a.k.a. line equation, linear regression)

world’s smallest perceptron!
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Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Learning a Perceptron

what is this 
activation function?
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Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Learning a Perceptron

what is this 
activation function? linear function!
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Given several examples 

Modify weight        such that gets ‘closer’ to 

Learning Strategy  
(gradient descent)

and a perceptron

perceptron 
output

true 
label

perceptron 
parameter
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Code to train your perceptron:

just one line of code!
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Gradient descent

(partial) derivatives tell us how 
much one variable affects another
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Given a fixed-point on 
a function,  

move in the direction 
opposite of the 

gradient

Gradient descent
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Gradient descent

update rule:
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Backpropagation
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World’s Smallest Perceptron!

back to the…

function of ONE parameter!
(a.k.a. line equation, linear regression)
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Training the world’s smallest perceptron

this should be the 
gradient of the loss 

function

Now where does this come from?

This is just gradient 
descent, that means…
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…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…
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Compute the derivative

That means the weight update for gradient descent is:

just shorthand

move in direction of negative gradient
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Gradient Descent (world’s smallest perceptron) 

For each sample


1. Predict


a. Forward pass


b. Compute Loss


2. Update


a. Back Propagation


b. Gradient update
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Training the world’s smallest perceptron
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world’s (second) smallest  
perceptron!

function of two parameters!
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Gradient Descent 

For each sample


1. Predict


a. Forward pass


b. Compute Loss


2. Update


a. Back Propagation


b. Gradient update

we just need to compute partial 
derivatives for this network
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Derivative computation

Why do we have partial derivatives now?
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Derivative computation

Gradient Update
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Gradient Descent 

For each sample


1. Predict


a. Forward pass


b. Compute Loss


2. Update


a. Back Propagation


b. Gradient update
(adjustable step size)

two lines now

(side computation to track loss. 
not needed for backprop)
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We haven’t seen a lot of ‘propagation’ yet  
because our perceptrons only had one layer…
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Multi-layer perceptron

function of FOUR parameters and FOUR layers!
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:
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Entire network can be written out as a long equation

What is known? What is unknown?

known

We need to train the network:
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Entire network can be written out as a long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function 
sometimes has 

parameters
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Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP

 84



Gradient Descent 

For each random sample


1. Predict


a. Forward pass


b. Compute Loss


2. Update


a. Back Propagation


b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives
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So we need to compute the partial derivatives
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how

…this
this

does
affect…

Partial derivative describes…

So, how do you compute it?

(loss layer)

Remember,
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The Chain Rule
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rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…
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rest of the network

Chain Rule!
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rest of the network

Just the partial 
derivative of L2 loss
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rest of the network

Let’s use a Sigmoid function
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rest of the network

Let’s use a Sigmoid function

 93



rest of the network

 94



 95



already computed. 
re-use (propagate)!
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The Chain Rule

a.k.a. backpropagation

 97



The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on
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The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

already computed. 
re-use (propagate)!
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depends ondepends on
depends on

depends ondepends on

depends on

depends on
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Gradient Descent 

For each example sample


1. Predict


a. Forward pass


b. Compute Loss


2. Update


a. Back Propagation


b. Gradient update
 101



vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent 

For each example sample


1. Predict


a. Forward pass


b. Compute Loss


2. Update


a. Back Propagation


b. Gradient update
 102



Stochastic gradient descent
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What we are truly minimizing:

min
θ

𝑁

∑
𝑖=1

𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))

The gradient is:

 104



What we are truly minimizing:

min
θ

𝑁

∑
𝑖=1

𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))

The gradient is:

𝑁

∑
𝑖=1

𝜕𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))
𝜕θ

What we use for gradient update is:
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What we are truly minimizing:

min
θ

𝑁

∑
𝑖=1

𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))

The gradient is:

𝑁

∑
𝑖=1

𝜕𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))
𝜕θ

What we use for gradient update is:

𝜕𝐿(𝑦𝑖, 𝑓𝑀𝐿𝑃(𝑥𝑖))
𝜕θ for some i
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vector of parameter update equations

vector of parameter partial derivatives

Stochastic Gradient Descent 

For each example sample


1. Predict


a. Forward pass


b. Compute Loss


2. Update


a. Back Propagation


b. Gradient update
 107



How do we select which sample?

• Select randomly!

Do we need to use only one sample?

• You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

• It’s very expensive when N is large (big data).

Do I lose anything by using stochastic GD?
• Same convergence guarantees and complexity!
• Better generalization.
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Convolution Neural Networks 
(ConvNet)

!109



Convolution Neural Networks

!110



Motivation

 111



Recap: Before Deep Learning

Input  
Pixels

Extract  
Features

Figure: Karpathy 2016

Concatenate into  
a vector x

SVM

Linear  
Classifier

Ans
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The last layer of (most) CNNs are linear 
classifiers

Input  
Pixels

Ans

Perform everything with a big neural  
network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get  
to the end of the network, the classes are linearly separable

(GoogLeNet)

 113
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ConvNets 
They’re just neural networks with  

3D activations and weight sharing

 117
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ConvNet



 146

ConvNet
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ConvNet
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ConvNet
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ConvNet



 150

ConvNet
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ConvNet
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ConvNet



CNNs Notations

 153

Padding

Stride

Pooling



Stride
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https://github.com/vdumoulin/conv_arithmeticAnimations: 

https://github.com/vdumoulin/conv_arithmetic
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Stride
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Stride
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Stride
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Stride
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Stride



 160

Stride
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Stride
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Stride
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Stride
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Stride
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Stride



CNNs Notations
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Padding

Stride

Pooling



Padding
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Full padding

Same padding

No padding
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Padding



 169

Padding



 170

Padding



 171

Padding



 172

How big is the output?
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How big is the output?
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Other variations?

DilationTransposed

https://arxiv.org/abs/1603.07285More info? Check this 

https://arxiv.org/abs/1603.07285


CNNs Notations
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Padding

Stride

Pooling



Pooling
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 177

Pooling



• \
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Pooling



 179

Max Pooling



 180



 181

Example ConvNet



Hierarchical Feature representation
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Visual embedding 
(Img2Vec)

 183

Feature extraction part Classification part

A ‘feature vector’ of an image is simply a list of numbers taken from the output of a neural 
network layer.  
This vector is a dense representation of the input image, and can be used for a variety of 
tasks such as ranking, classification, or clustering.



How to train ConvNets?
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 185

How to train ConvNets?
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How to train ConvNets?
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Mini-batch Gradient Decent
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Regularization
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Regularization



 190

1) Data pre-processing
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1) Data pre-processing
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1) Data pre-processing
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1) Data pre-processing
Here are few tricks used by the AlexNet team.

Without data augmentation, 
the authors would not have 
been able to use such a 
large network because it 
would have suffered from 
substantial overfitting.
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2) Choose your architecture
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3) Initialize your weights
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4) Find a learning rate
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4) Find a learning rate
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4) Find a learning rate
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4) Find a learning rate
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4) Find a learning rate



 201

What to fiddle?



 202



 203

Dropout

Dropout is yet another approach to reduce overfitting!

When a neuron is dropped, it does not contribute to either forward or backward 
propagation. So every input goes through a different network architecture, as 
shown in the animation. As a result, the learnt weight parameters are more robust 
and do not get overfitted easily. 
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Dropout

During testing, there is no dropout and the whole network is used.
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Dropout



 206

Dropout



 207

Transfer Learning



 208

Transfer Learning



Recurrent Neural Networks

 209



Neural Network

 210



Temporal dependencies

 211
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Sequential Data

• Sometimes the sequence of data matters.

• Text generation

• Stock price prediction


• For example: The clouds are in the .... ? 
• sky
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Sequential Data

• Sometimes the sequence of data matters.

• Text generation

• Stock price prediction


• For example: The clouds are in the .... ? 
• sky 

• Simple solution: N-grams?

• Hard to represent patterns with more than a few words 

(possible patterns increases exponentially)
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Sequential Data

• Sometimes the sequence of data matters.

• Text generation

• Stock price prediction


• For example: The clouds are in the .... ? 
• sky 

• Simple solution: N-grams?

• Hard to represent patterns with more than a few words 

(possible patterns increases exponentially)

• Simple solution: Neural networks?


• Fixed input/output size

• Fixed number of steps

 215



 216

Time-delay neural network



Recurrent neural networks

• Recurrent neural networks (RNNs) are networks with loops, 
allowing information to persist [Rumelhart et al., 1986].


• Have memory that keeps track of information observed so far

• Maps from the entire history of previous inputs to each output

• Handle sequential data
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Neural Networks

 218



Recurrent Neural Networks

 219



Recurrent Neural Networks
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Recurrent Neural Networks

 221



Recurrent Neural Networks

 222



 223

Recurrent neural networks



Recurrent neural networks

We can process a sequence of vectors x  by applying a recurrence formula 
at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.

 224



 225

Recurrent neural networks



RNN: Computational Graph
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RNN: Computational Graph
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RNN: Computational Graph

 228



RNN: Computational Graph

 229

First words get transformed into machine-readable vectors. Then the RNN 
processes the sequence of vectors one by one.

Animations by Michael Nguyen)



The hidden state acts as the neural networks internal memory. It holds 
information on previous data the network has seen before.
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RNN: Computational Graph

Animations by Michael Nguyen)
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RNN: Computational Graph



RNN: Computational Graph:  
Many to One

 232



 233

RNN: Computational Graph:  
One to Many



Sequence to Sequence: Many-to-one + 
one-to-many
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How to train RNNs?
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Back-Propagation Through Time (BPTT)

 236



BPTT

 237



Truncated BPTT
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Truncated BPTT
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Truncated BPTT

 240



 241

How does gradient flow in RNN?



RNN Gradient Flow

 242



Why the activation function is Tanh?

• The tanh activation is used to help regulate the values flowing through the 
network. The tanh function squishes values to always be between -1 and 1.

 243

Animations from Michael Nguyen 

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------
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RNN Gradient Flow
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RNN Gradient Flow
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RNN Gradient Flow
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RNN Gradient Flow
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RNN Gradient Flow

0



The Problem of Long-term 
Dependencies

 249



Short-Term memory

• RNNs suffer from what is known as short-term memory!

 250



 251

RNN Gradient Flow

0



Long Short-Term Memory Networks 
(LSTM)

 252

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 
1997



Long Short-Term Memory Networks

• Long Short-Term Memory (LSTM) networks are RNNs capable of 
learning long-term dependencies [Hochreiter and Schmidhuber, 1997].


– A memory cell using logistic and linear units with multiplicative 
interactions: 

– Information gets into the cell whenever its input gate is on.

– Information is thrown away from the cell whenever its forget gate is off.

– Information can be read from the cell by turning on its output gate
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Notation

 254

Memory cell

forget gate Output gateInput gate



LSTM overview

 255



Memory Cell

 256



Gates

 257



Sigmoid activation function

• Gates contains sigmoid activations. A sigmoid activation is similar to the tanh 
activation. Instead of squishing values between -1 and 1, it squishes values 
between 0 and 1.  

• That is helpful to update or forget data because any number getting multiplied by 
0 is 0, causing values to disappears or be “forgotten.” Any number multiplied by 1 
is the same value therefore that value stay’s the same or is “kept.”

 258

Animations from Michael Nguyen 

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------


Forget Gate

 259



 260

Forget Gate

Animations from Michael Nguyen 

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------


Input Gate

 261
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Input Gate

Animations from Michael Nguyen 

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------


Vector of New Candidate Values

 263



Memory Cell Update

 264
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Memory Cell Update

Animations from Michael Nguyen 

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------


Output Gate

 266



Output Update

 267
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Output Update

Animations from Michael Nguyen 

https://towardsdatascience.com/@learnedvector?source=post_page-----44e9eb85bf21----------------------
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How does gradient flow in LSTM?
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Long Short-Term Memory Networks 
(LSTM)



LSTM Gradient Flow

 271



 272

LSTM Gradient Flow

The gradient behaves similarly to the forget gate, and if the forget gate decides that a 
certain piece of information should be remembered, it will be open and have values 
closer to 1 to allow for information flow.



RNN vs. LSTM

 273



Variants on LSTM

 274



 275

Variants on LSTM



 276

Variants on LSTM



Summary

• RNNs allow a lot of flexibility in architecture design

• Vanilla RNNs are simple but don’t work very well

• Common to use LSTM or GRU: their additive interactions 

improve gradient flow

• Backward flow of gradients in RNN can explode or vanish. 

• Exploding is controlled with gradient clipping. Vanishing is 

controlled with additive interactions (LSTM)

• Better/simpler architectures are a hot topic of current research

• Better understanding (both theoretical and empirical) is needed

 277



Application: Image Captioning

 278
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
https://www.youtube.com/watch?v=56TYLaQN4N8&index=14&list=PLE6Wd9FR--
EfW8dtjAuPoTuPcqmOV53Fu
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Additional resources



• Basic reading: No standard textbooks yet! Some good resources: 
• https://sites.google.com/site/deeplearningsummerschool/ 

• http://www.deeplearningbook.org/ 

• http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
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Additional resources

https://sites.google.com/site/deeplearningsummerschool/
http://www.deeplearningbook.org/
http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

