
Geospatial and Time Series
Data Analysis

A tutorial for Data Science
Course IFT6758

Spatial Data Analysis

● Spatial data: Information about locations and
shapes of objects in a geographic coordinate
system

Data analysis for traffic management

● Data collection from mobile devices

● Understanding mobility patterns

● Predicting traffic flow

● Optimizing traffic signal control (traffic

lights)

Spatial Data Analysis

● Spatial data: Information about locations and
shapes of objects in a geographic coordinate
system

Predicting passenger demand

● Data is collected after each trip

● Recommendations to drivers

● Pricing based on predicted demand

● Similar types of analysis are possible for

public transit

Spatial Data Analysis

● Spatial data: Information about locations and
shapes of objects in a geographic coordinate
system

Urban planning

● Different types of data with

geographical attributes (census

data, traffic data, etc.)

● Long-term predictions

● Zoning (clustering)

Understanding Geospatial Data

● Location: a point on earth is specified by its
latitude and longitude

Imagine a line segment between the center of
the Earth and a location

Understanding Geospatial Data

● Location: a point on earth is specified by its
latitude and longitude

Latitude is the angle in the north-south
direction

Understanding Geospatial Data

● Location: a point on earth is specified by its
latitude and longitude

Longitude is the angle in the east-west
direction

Understanding Geospatial Data

● Location: a point on earth is specified by its
latitude and longitude

● degrees, minutes, seconds

● degrees and decimal
minutes

● decimal degrees

Example Task

● You are given the records of taxi trips in San
Francisco

Example Task

● You are given the records of taxi trips in San
Francisco

● The task is to predict the passenger demand
How many requests there will be for trips departing from
zone A next Thursday at 10 AM?

Car ID
Departure Arrival

Date-Time Latitude Longitude Date-Time Latitude Longitude

...

...

...

Visulalizing Spatial Data

You want to visualize all points of departure
and arrival at a certain time.

Can’t we just use
latitude and longitude
as coordinates in a
two-dimensional
plane?

Longitude

L
at

it
ud

e

Map Projections

We cannot just use latitude and longitude as
coordinates in a two-dimensional plane!

Cylindrical Projections

Example cylindrical projections

● Mercator projection

● Equal-area cylindrical projection

● Universal transverse Mercator projection

Conic Projections

Example conic projections

● Albers equal-area projection

● Lambert conformal conic projection

● Equidistant projection

Azimuthal Projections

Example Azimuthal projections

● Gnomonic projection

● Lambert equal-area azimuthal projection

● Orthographic projection

Datums

A datum is a mathematical model of Earth

● NAD 27 (North America)

● NAD 83 (US, Canada, Mexico, and Central America)

● WGS 84 (Global, used by GPS satellites)

Representing the data in the wrong datum (without
converting) can lead to errors.

Visualizing Spatial Data
● Pick a projection and plot the base map in that projection

● Transfer the data to that projection and plot them like usual

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt

map = Basemap(projection='ortho',
 lat_0=0, lon_0=0)

map.drawmapboundary(fill_color='aqua')
map.fillcontinents(color='coral',lake_color='aqua')
map.drawcoastlines()

lons = [0, 10, ­20, ­20]
lats = [0, ­10, 40, ­20]

x, y = map(lons, lats)

map.scatter(x, y, marker='D',color='m')

Visualizing Spatial Data
● You want to see how the departure/arrivals are scattered in different

areas of the city.

● Zones of city are not natural features. You have to load this data
separately.

Shapes

Geospatial data often represents shapes in the form of points,
paths and surfaces

● A Point is a coordinate

● A LineString consists of a series of segments

● A Polygon is a closed LineString

LineString Polygon

GIS data formats

● GIS data files usually represent:
– Geospatial features (points, lines, shapes, ...)

– Attributes (population, name, ...)

– Meta-data (datum, projection, ...)

– Display information (color, line styles, ...)

– ...

● Types of GIS data:

– Raster format data

– Vector format data

raster vector

Shapefiles

● Shapefiles are one of the most common vector data formats

● A collection of multiple files
– .shp (spatial information)

– .prj (projection information)

– .dbf (database of attributes)

– .shx (index for fast access)

– ...

GIS viewer OpenJump

Example Task (continued)

We want to predict the trips departing from a zone at a
certain date/time.

We can use different types of features:

● Features related to time
– Day of week, weekday/weekend

– Time of day

– Season

– Holiday or not

Example Task (continued)

We want to predict the trips departing from a zone at a
certain date/time.

We can use different types of features:

● Features related to location
– ID of the departure zone

– Population of departure zone

– Is the departure zone a business area?

– Is the departure zone a recreation area?

Such information
can be extracted
from proxies like
census data

Example Task (continued)

We want to predict the trips departing from a zone at a
certain date/time.

We can use different types of features:

● Features related to weather
– temperature

– humidity

– percipitation

– ...

Example Task (continued)

We want to predict the trips departing from a zone at a
certain date/time.

● The output value is the count of trips made from a region
at a certain time

● For each date/time/region, we should count the number of
trips in the data

● We have the departure coordinate in our data, and the
shapes of city zones from the shapefiles

● How can we check wether a point falls within a polygon?

Spatial Relations

The spatial relations are defined for any
two spatial objects that can be points,
lines, or polygons:

● Equals
● Disjoint (no point in common)
● Intersects (not disjoint)
● Touches (at least one boundary point in

common, but no shared interior points)
● Contains
● Within (same as Contains, opposite order

of argument)

from shapely import Point, Polygon

point = Point(0.5, 0.5)
square = Polygon([(0, 0), (0, 1), (1, 1), (1, 0)])
print(point.within(square))

True

Example Task (continued)

For each date/time/region, we should count the number of
trips in the data

● Load the departure points as latitude/longitude pairs from
trip data

● Load the city zone polygons from the city shapefiles

● Loop over departure points and polygons and see if the
within relation holds

● This can be very slow!

Example Task (continued)

For each date/time/region, we should count the number of
trips in the data

● Load the departure points into the geospatial database

● Load the city zone polygons into the goespatial database

● Perform a spatial join

● Aggregate the counts

import geopandas as gpd

// load the departure points ...

// load the zones
zones = gpd.read_file('zones.shp')
points_and_zones = gpd.sjoin(points, zones,

 op='within')

Example Task (continued)

The city is partitioned into zones according to urban planning
considerations.

You want to define your own partitioning of the city (group
the neighborhoods with similar demand patterns together)

● Start with small areas as building blocks

● Create a feature vector representing trip demand patterns
for all these small areas

● Cluster these small areas into larger zones

Spatially Constrained Clustering

● The clustered areas should be contiguous

● We need special algorithms that take contiguity constraints
into account

invalid clustering valid clusteringareas

Spatially Constrained Clustering

● One possible method: local search

– Start with an initial grouping into contiguous clusters

– Evaluate all possible ways of moving an area to an adjacent
cluster

– Perform the move that improves the clustering criterion the
most

– Continue until there is no improving move

● Equip the local search with meta-heuristics: tabu search,
simulated annealing

● Python Implementations are available in ClusterPy library

Clustering Temporal Data

Temporal Data: Data that represents a state in time

Examples:
● Power consumption of a household

● Trips of a passenger

● Prices in stock market

The general idea for clustering temporal data:

● Define a distance metric to measure the similarity of
sequences

● Use a standard clustering algorithm that accepts custom
similarity measures

Dynamic Time Warping

● An algorithm for measuring the distance between two temporal
sequences which may vary in speed

● The two first and two last entries are matched together

● We decide how to match the other entries of the two sequences

● The matching is made such that the total distance is minimized

Dynamic Time Warping

● The matching is made such that the total distance is minimized

● Sequences x and y have n and m entries

● For each pair find the best matching up to that pair

● This can be done recursively:

Dynamic Time Warping

Summary

● Coordinate Systems

● Projections

● GIS formats (shapefiles)

● Spatial Relations

● Geospatial Databases

● Spatial Clustering

● Temporal Clustering

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

