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Announcements

• Mid-term exam grades will be published on Gradescope today.


• Assignment 4, final presentation, group and individual reports will be published on 
Gradescope on Wednesday.


• Presentation format is similar to mid-term, i.e., 7 Min for presentation (all team-
members should present to get a score)


BUT: 


• 3 Min questions about the presentation


• 5 Min coding questions from all team-members


• You should ONLY present the model that you will submit on December 2. 
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Graphs are everywhere
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Graphs are a general 


language for describing 


and modeling complex 


systems


Graph G = (V, E)
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Graphs are everywhere



What is a graph?

• Graphs can have labels on their edges and/or nodes 
 

• Labels can also be considered weights

!5



!6

What is a graph?

Protein interation networks 

Molecules 
Road maps 



• Labels don’t have to be numerical, they can be textual.


• Labels don’t have to be unique; it’s entirely possible and 
sometimes useful to give multiple nodes the same label. 
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What is a graph?
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What is a graph?

Wikipedia 
Google Knowledge graph 

….

   



• Graphs can have features (a.k.a attributes).
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What is a graph?
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What is a graph?

Social networks 
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What is a graph?

Graphs can be either:

• Heterogeneous — composed of different types of nodes

• Homogeneous — composed of the same type of nodes


and are either:

• Static — nodes and edges do not change, nothing is added or taken away

• Dynamic — nodes and edges change, added, deleted, moved, etc.



Why are graphs useful?

• This is a very flexible data structure that generalizes many 
other data structures. For example,  if there are no edges, then 
it becomes a set; if there are only “vertical” edges and any two 
nodes are connected by exactly one path, then we have a tree. 


• Nodes and edges typically come from some expert knowledge 
or intuition about the problem.


e.g., Atoms in molecules, Users in a social network, Cities 
in a transportation system, Players in team sport, Neurons 
in the brain, Interacting objects in a dynamic physical 
system, and Pixels, bounding boxes or segmentation 
masks in images
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https://en.wikipedia.org/wiki/Set_(abstract_data_type)
https://en.wikipedia.org/wiki/Tree_(graph_theory)


• Most ML/CV problems can be viewed as graphs 


• Graph gives a lot of flexibility and can give a very different and 
interesting perspective on the problem


• Neural networks can be viewed as graph where nodes are 
neutrons and weights are edges
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Why are graphs useful?

 from (Antonakos et al., CVPR, 2015) 

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Antonakos_Active_Pictorial_Structures_2015_CVPR_paper.html


Graph mining tasks

• Classical ML tasks in graphs:


• Node classification: Predict a type of a given node


• Link prediction: Predict whether two nodes are linked


• Community detection: Identify densely linked clusters of 
nodes


• Network similarity: How similar are two (sub)networks
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Node Classification
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Node Classification



Link Prediction
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Link Prediction
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Community Detection

• The field of community detection aims to identify highly connected groups of 
individuals or objects inside these networks, these groups are called 
communities.
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Network Similarity
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Graph Basics



Traverse a graph

• Walk: A graph traversal — a closed walk is when the 
destination node is the same as the source node


• Trail: A walk with no repeated edges — a circuit is a closed trail


• Path: A walk with no repeated nodes — a cycle is a closed path
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Adjacency Matrix

• The Adjacency Matrix of a graph is be made of 1s and 0s unless it 
is otherwise weighted or labelled.  A can be built by following this 
rule:
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The Adjacency Matrix of a undirected graph is therefore symmetrical 
along its diagonal



Degree Matrix
• The Degree Matrix  D  of a graph is essentially a diagonal 

matrix, where each value of the diagonal is the degree of its 
corresponding node.
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Laplacian Matrix

• The Laplacian Matrix of a graph is the result of subtracting 
the Adjacency Matrix from the Degree Matrix: 

• Each value in the Degree Matrix is subtracted by its 
respective value in the Adjacency Matrix as such:
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Graph Learning



Traditional Machine Learning Pipeline

• (Supervised) Machine Learning Lifecycle
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Feature Learning in Graphs

• Goal: Efficient task-independent feature learning for machine 
learning in graphs!
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Representation
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* slide from Thomas Kipf, University of Amsterdam



Why graph learning is hard?
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Standard machine learning/deep learning approaches don’t 
work on this data!



Why Graph learning is hard?

• Modern deep learning toolbox is designed for simple 
sequences or grids.
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recap: Isomorphism problem

• The graph isomorphism problem is the computational problem of 
determining whether two finite graphs are isomorphic.


• The graph isomorphism problem is neither known to be NP-
complete nor known to be tractable
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https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_isomorphism


• Graphs are far more complex than text or visual data!


• Complex topographical structure  (i.e., no spatial locality like 
grids)


• No fixed node ordering or reference point  (i.e., the 
isomorphism problem)


• Often dynamic and have multimodal features.
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Why Graph learning is hard?
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Node Embedding



Node Embedding

• Intuition: Find embedding of nodes to d-dimensions so that 
“similar” nodes in the graph have embeddings that are close 
together.
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OutputInput



• Assume we have a graph G:

▪ V is the vertex set.
▪ A is the adjacency matrix (assume binary).
▪ No node features or extra information is used!  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Node Embedding 
(Set up)



• Assume we have a graph G:

▪ V is the vertex set.
▪ A is the adjacency matrix (assume binary).
▪ No node features or extra information is used!  

• Goal is to encode nodes so that similarity in the embedding 
space (e.g., dot product) approximates similarity in the original 
network.  
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Node Embedding 
(Set up)



!38

Node Embedding 
(Set up)

Goal:

Need to define!



Learning Node Embeddings

1. Define an encoder (i.e., a mapping from nodes to 
embeddings)


2. Define a node similarity function (i.e., a measure of similarity 
in the original network).


3. Optimize the parameters of the encoder so that:
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Key Components

• Encoder maps each node to a low-dimensional vector. 
 
 
 
 
 
Similarity function specifies how relationships in vector 
space map to relationships in the original network.
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node in the input graph

d-dimensional 
embedding

Similarity of u and v in 
the original network

dot product between node 
embeddings



Shallow Encoding

• Simplest encoding approach: encoder is just an embedding-
lookup
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matrix, each column is node embedding 
[what we learn!]

indicator vector, all zeroes except a one in 
column indicating node v 



• Simplest encoding approach: encoder is just an embedding-
lookup

!42

Shallow Encoding

Dimension/size of 
embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node



From Shallow to Deep

• Limitations of shallow encoding: 

▪ O(|V|) parameters are needed: there no parameter sharing 
and every node has its own unique embedding vector.   

▪ Inherently “transductive”: It is impossible to generate 
embeddings for nodes that were not seen during training.  

▪ Do not incorporate node features: Many graphs have features 
that we can and should leverage. 
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▪ We will now discuss “deeper” methods based on graph neural 
networks. 
 

▪ In general, all of encoders can be combined with the similarity 
functions that depends on graph structure.
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complex function that 
depends on graph structure.

From Shallow to Deep



How to Define Node Similarity?
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• Key distinction between “shallow” methods is how they 
define node similarity. 

• E.g., should two nodes have similar embeddings if they…. 
• are connected? 
• share neighbors? 
• have similar “structural roles”? 
• …?



How to Define Node Similarity?
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1.  Adjacency-based similarity 

2.  Multi-hop similarity 

3.  Random walk approaches

High-level structure and material from: 
• Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data 

Engineering Bulletin on Graph Systems.

https://arxiv.org/abs/1709.05584
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Adjacency-based Similarity

Material based on: 
• Ahmed et al. 2013. Distributed Natural Large Scale Graph Factorization. WWW.

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/40839.pdf


Adjacency-based Similarity
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• Similarity function is just the edge weight between u and v 
in the original network.


• Intuition: Dot products between node embeddings 
approximate edge existence.


(weighted) adjacency matrix 
for the graph

loss (what we want to 
minimize)

sum over all node pairs 

embedding similarity



Adjacency-based Similarity
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• Find embedding matrix that minimizes the loss   
• Option 1: Use stochastic gradient descent (SGD) as a general 

optimization method. 
• Highly scalable, general approach 

• Option 2: Solve matrix decomposition solvers (e.g., SVD). 
• Only works in limited cases.



Recap: SVD for Word embedding
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Word-
document 

matrix

Word 
embedding 

matrix

Embedding of 
Documents



Recap: SVD for Node embedding
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Adjacency  
Matrix

Node 
Embedding 

matrix

Edges 
Embedding



Recap: Node Similarity is preserved

• Given an Adjacency matrix C, we can get a decomposition C’ from SVD.
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=



Matrix factorization

• Matrix factorization algorithms work by decomposing the user-
item interaction matrix into the product of two lower 
dimensionality rectangular matrices.


• This family of methods became widely known during 
the Netflix prize challenge 2006 due to its effectiveness 
in recommender systems..
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https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Netflix_prize
https://en.wikipedia.org/wiki/Recommender_systems


Adjacency-based Similarity
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▪ Drawbacks: 
▪ O(|V|2) runtime. (Must consider all node pairs.)
▪Can make O([E|) by only summing over non-zero edges and 

using regularization (e.g., Ahmed et al., 2013) 
▪ O(|V|) parameters! (One learned vector per node).
▪ Only considers direct, local connections.

e.g., the blue node is obviously more 
similar to green compared to red node, 
despite none having direct connections.

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/40839.pdf
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Multi-hop Similarity

Material based on: 
• Cao et al. 2015. GraRep: Learning Graph Representations with Global Structural 

Information. CIKM. 
• Ou et al. 2016. Asymmetric Transitivity Preserving Graph Embedding. KDD. 
• Jian Tang, Meng Qu,  Mingzhe Wang, Jun Yan, Ming Zhang and  Qiaozhu Mei.  LINE: 

Large-scale Information Network Embedding . WWW’15   

https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512


Multi-hop Similarity

• Idea: Consider k-hop node neighbors.


• E.g., two or three-hop neighbors.
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• Red: Target node 
• Green: 1-hop neighbors 

• A (i.e., adjacency matrix) 
• Blue: 2-hop neighbors 

• A2 
• Purple: 3-hop neighbors 

• A3 
•



• If         gives us the number of walks from node i to node j 
after k steps.
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Ak

Power of djacency matrix



Power of djacency matrix

• If         gives us the number of walks from node i to node j 
after k steps.
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Ak



Multi-hop Similarity

• Basic idea:


• Train embeddings to predict k-hop neighbors.
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Multi-hop Similarity

• Basic idea:


• In practice (GraRep from Cao et al, 2015):


• Use log-transformed, probabilistic adjacency matrix: 
 
 
 

• Train multiple different hop lengths and concatenate output.
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constant shiftnode degree

https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512


Multi-hop Similarity

• Another option: Measure overlap between node neighborhoods.


• Example overlap functions:


• Jaccard similarity
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• Su,v  is the neighborhood overlap between u and v (e.g., Jaccard 
overlap). 

• This technique is known as HOPE (Yan et al., 2016).
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Multi-hop Similarity

embedding similarity
multi-hop network similarity (i.e., any 

neighborhood overlap measure)

http://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf
http://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf


Summary

• Basic idea so far:


• 1) Define pairwise node similarities.


• 2) Optimize low-dimensional embeddings to approximate these 
pairwise similarities. 


• Issues:


• Expensive: Generally O(|V|2), since we need to iterate over all pairs 
of nodes.


• Brittle: Must hand-design deterministic node similarity measures.


• Massive parameter space: O(|V|) parameters
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Random Walk Approaches

Material based on: 
• Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD. 
• Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD. 

•

https://arxiv.org/pdf/1403.6652.pdf
https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf


Transition Matrix
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Random Walk
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Random Walk Embeddings
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probability that u 
and v co-occur on 

a random walk over 
the network



recap: Skip-gram model
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(recap) word2vec
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• Node2vec is similar to word2vec skip-gram model.


• The same way as a document is an ordered sequence of words, 
one could sample sequences of nodes from the underlying 
network and turn a network into a ordered sequence of nodes.



(recap) word2vec
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• word2vec can embed a very specific graphs:



Random Walk Embeddings
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1. Estimate probability of visiting node v 
on a random walk starting from node 
u using some random walk strategy R. 
 
 
 

2. Optimize embeddings to encode these 
random walk statistics. 



Why Random walks?

1. Expressivity: Flexible stochastic definition of node 

similarity that incorporates both local and higher-order 

neighborhood information.


2. Efficiency: Do not need to consider all node pairs when 

training; only need to consider pairs that co-occur on 

random walks.
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Random Walk Optimization

1. Run short random walks starting from each node on the 
graph using some strategy R. 

2. For each node u collect NR(u), the multiset* of nodes 
visited on random walks starting from u.  

3. Optimize embeddings to according to:
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* NR(u) can have repeat elements since nodes can be visited multiple times on 
random walks.



• Intuition: Optimize embeddings to maximize likelihood of 
random walk co-occurrences. 
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Random Walk Optimization



• Intuition: Optimize embeddings to maximize likelihood of 
random walk co-occurrences. 


• Parameterize P(v | zu) using softmax:
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Random Walk Optimization



• Putting things together:


• Optimizing random walk embeddings = Finding 
embeddings zu  that minimize L
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Random Walk Optimization



• But doing this naively is too expensive!!

!77

Random Walk Optimization



• But doing this naively is too expensive!!
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Random Walk Optimization



• But doing this naively is too expensive!!
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Random Walk Optimization

Negative Sampling



How we should randomly walk?
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• So far we have described how to optimize embeddings given random 
walk statistics. 

• What strategies should we use to run these random walks? 

• Simplest idea: Just run fixed-length, unbiased random walks 
starting from each node (i.e., DeepWalk from Perozzi et al., 2013). 

• But can we do better?

https://arxiv.org/abs/1403.6652
https://arxiv.org/abs/1403.6652
https://arxiv.org/abs/1403.6652
https://arxiv.org/abs/1403.6652


node2vec: Biased Walks

• Idea: use flexible, biased random walks that can trade off 
between local and global views of the network (Grover and 
Leskovec, 2016).  
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https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf


node2vec: Biased Walks

• Two classic strategies to define a neighborhood  of a given 
node :
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𝑁𝐵𝐹𝑆(𝑢) = { 𝑠1, 𝑠2, 𝑠3}
𝑁𝐷𝐹𝑆(𝑢) = { 𝑠4, 𝑠5, 𝑠6}

Local microscopic view

Global macroscopic view



node2vec sampling strategy

• Node2vec’s sampling strategy, accepts 4 arguments:


• Number of walks: Number of random walks to be generated from each 
node in the graph


• Walk length: How many nodes are in each random walk


• P: Return hyperparameter


• q: Inout hyperaprameter (”walk away” hyperaprameter)


and also the standard skip-gram parameters (context window size, number 
of iterations etc.)
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Biased Random Walks

• Biased 2nd-order random walks explore network neighborhoods:


▪ Random walk started at u and is now at w 

▪ Insight: Neighbors of  w can only be: 

 

 

Idea: Remember where that walk came from
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s1

s2

w

s3

u
Closer to 

Same distance to 

Farther from 



• Walker is at w. Where to go next?  


• p, q model transition probabilities


• p … return parameter


• q … ”walk away” parameter
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 1/p, 1/q, 1 are 
unnormalized 
probabilities

Biased Random Walks



• Walker is at w. Where to go next?  


• BFS-like walk: Low value of p


• DFS-like walk: Low value of q


Ns(u) are the nodes visited by the walker
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Biased Random Walks



BFS vs. DFS
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P  q   



Experiments: Micro vs. Macro

• Interactions of characters in a novel:
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Other random walk ideas

• Different kinds of biased random walks:

• Based on node attributes (Dong et al., 2017). 
• Based on a learned weights (Abu-El-Haija et al., 2017) 

• Alternative optimization schemes: 
• Directly optimize based on 1-hop and 2-hop random walk 

probabilities (as in LINE from Tang et al. 2015). 
• Network preprocessing techniques: 

• Run random walks on modified versions of the original 
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al. 
2016’s HARP). 
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https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845
https://arxiv.org/abs/1706.07845


Summary

• Basic idea: Embed nodes so that distances in 

embedding space reflect node similarities in the original 

network. 

▪ Different notions of node similarity: 

▪ Adjacency-based (i.e., similar if connected) 

▪ Multi-hop similarity definitions. 

▪ Random walk approaches. 
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▪ No one method wins in all cases…. 

▪ e.g., node2vec performs better on node classification while 
multi-hop methods performs better on link prediction (Goyal 
and Ferrara, 2017 survey).


▪ Random walk approaches are generally more efficient (i.e., O(|E|) 
vs. O(|V|2))


▪ In general: Must choose a node similarity that matches 
application!
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So what method should I use..? 

https://arxiv.org/abs/1705.02801
https://arxiv.org/abs/1705.02801
https://arxiv.org/abs/1705.02801
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Graph Neural Networks 
& 

Graph Convolutional Networks

Thursday!


