
Graph Learning
IFT6758 - Data Science

Sources:
 http://snap.stanford.edu/proj/embeddings-www/

https://jian-tang.com/files/AAAI19/aaai-grltutorial-part2-gnns.pdf

https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114
http://demo.clab.cs.cmu.edu/NLP/
http://snap.stanford.edu/proj/embeddings-www/

Announcements

• Mid-term exam grades will be published on Gradescope today.

• Assignment 4, final presentation, group and individual reports will be published on
Gradescope on Wednesday.

• Presentation format is similar to mid-term, i.e., 7 Min for presentation (all team-
members should present to get a score)

BUT:

• 3 Min questions about the presentation

• 5 Min coding questions from all team-members

• You should ONLY present the model that you will submit on December 2.

!2

Graphs are everywhere

!3

Graphs are a general

language for describing

and modeling complex

systems

Graph G = (V, E)

!4

Graphs are everywhere

What is a graph?

• Graphs can have labels on their edges and/or nodes 
 

• Labels can also be considered weights

!5

!6

What is a graph?

Protein interation networks

Molecules
Road maps

• Labels don’t have to be numerical, they can be textual.

• Labels don’t have to be unique; it’s entirely possible and
sometimes useful to give multiple nodes the same label.

!7

What is a graph?

!8

What is a graph?

Wikipedia 
Google Knowledge graph

….

• Graphs can have features (a.k.a attributes).

!9

What is a graph?

!10

What is a graph?

Social networks

!11

What is a graph?

Graphs can be either:

• Heterogeneous — composed of different types of nodes

• Homogeneous — composed of the same type of nodes

and are either:

• Static — nodes and edges do not change, nothing is added or taken away

• Dynamic — nodes and edges change, added, deleted, moved, etc.

Why are graphs useful?

• This is a very flexible data structure that generalizes many
other data structures. For example, if there are no edges, then
it becomes a set; if there are only “vertical” edges and any two
nodes are connected by exactly one path, then we have a tree.

• Nodes and edges typically come from some expert knowledge
or intuition about the problem.

e.g., Atoms in molecules, Users in a social network, Cities
in a transportation system, Players in team sport, Neurons
in the brain, Interacting objects in a dynamic physical
system, and Pixels, bounding boxes or segmentation
masks in images

!12

https://en.wikipedia.org/wiki/Set_(abstract_data_type)
https://en.wikipedia.org/wiki/Tree_(graph_theory)

• Most ML/CV problems can be viewed as graphs

• Graph gives a lot of flexibility and can give a very different and
interesting perspective on the problem

• Neural networks can be viewed as graph where nodes are
neutrons and weights are edges

!13

Why are graphs useful?

 from (Antonakos et al., CVPR, 2015)

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Antonakos_Active_Pictorial_Structures_2015_CVPR_paper.html

Graph mining tasks

• Classical ML tasks in graphs:

• Node classification: Predict a type of a given node

• Link prediction: Predict whether two nodes are linked

• Community detection: Identify densely linked clusters of
nodes

• Network similarity: How similar are two (sub)networks

!14

Node Classification

!15

!16

Node Classification

Link Prediction

!17

Link Prediction

!18

Community Detection

• The field of community detection aims to identify highly connected groups of
individuals or objects inside these networks, these groups are called
communities.

!19

Network Similarity

!20

!21

Graph Basics

Traverse a graph

• Walk: A graph traversal — a closed walk is when the
destination node is the same as the source node

• Trail: A walk with no repeated edges — a circuit is a closed trail

• Path: A walk with no repeated nodes — a cycle is a closed path

!22

Adjacency Matrix

• The Adjacency Matrix of a graph is be made of 1s and 0s unless it
is otherwise weighted or labelled. A can be built by following this
rule:

!23

The Adjacency Matrix of a undirected graph is therefore symmetrical
along its diagonal

Degree Matrix
• The Degree Matrix D of a graph is essentially a diagonal

matrix, where each value of the diagonal is the degree of its
corresponding node.

!24

Laplacian Matrix

• The Laplacian Matrix of a graph is the result of subtracting
the Adjacency Matrix from the Degree Matrix: 

• Each value in the Degree Matrix is subtracted by its
respective value in the Adjacency Matrix as such:

!25

!26

Graph Learning

Traditional Machine Learning Pipeline

• (Supervised) Machine Learning Lifecycle

!27

Feature Learning in Graphs

• Goal: Efficient task-independent feature learning for machine
learning in graphs!

!28

Representation

!29
* slide from Thomas Kipf, University of Amsterdam

Why graph learning is hard?

!30

Standard machine learning/deep learning approaches don’t
work on this data!

Why Graph learning is hard?

• Modern deep learning toolbox is designed for simple
sequences or grids.

!31

recap: Isomorphism problem

• The graph isomorphism problem is the computational problem of
determining whether two finite graphs are isomorphic.

• The graph isomorphism problem is neither known to be NP-
complete nor known to be tractable

!32

https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_isomorphism

• Graphs are far more complex than text or visual data!

• Complex topographical structure (i.e., no spatial locality like
grids)

• No fixed node ordering or reference point (i.e., the
isomorphism problem)

• Often dynamic and have multimodal features.

!33

Why Graph learning is hard?

!34

Node Embedding

Node Embedding

• Intuition: Find embedding of nodes to d-dimensions so that
“similar” nodes in the graph have embeddings that are close
together.

!35

OutputInput

• Assume we have a graph G:

▪ V is the vertex set.
▪ A is the adjacency matrix (assume binary).
▪ No node features or extra information is used!  

!36

Node Embedding
(Set up)

• Assume we have a graph G:

▪ V is the vertex set.
▪ A is the adjacency matrix (assume binary).
▪ No node features or extra information is used!  

• Goal is to encode nodes so that similarity in the embedding
space (e.g., dot product) approximates similarity in the original
network.

!37

Node Embedding
(Set up)

!38

Node Embedding
(Set up)

Goal:

Need to define!

Learning Node Embeddings

1. Define an encoder (i.e., a mapping from nodes to
embeddings)

2. Define a node similarity function (i.e., a measure of similarity
in the original network).

3. Optimize the parameters of the encoder so that:

!39

Key Components

• Encoder maps each node to a low-dimensional vector. 
 
 
 
 
 
Similarity function specifies how relationships in vector
space map to relationships in the original network.

!40

node in the input graph

d-dimensional
embedding

Similarity of u and v in
the original network

dot product between node
embeddings

Shallow Encoding

• Simplest encoding approach: encoder is just an embedding-
lookup

!41

matrix, each column is node embedding
[what we learn!]

indicator vector, all zeroes except a one in
column indicating node v

• Simplest encoding approach: encoder is just an embedding-
lookup

!42

Shallow Encoding

Dimension/size of
embeddings

one column per node

embedding
matrix

embedding vector for a
specific node

From Shallow to Deep

• Limitations of shallow encoding: 

▪ O(|V|) parameters are needed: there no parameter sharing
and every node has its own unique embedding vector.  

▪ Inherently “transductive”: It is impossible to generate
embeddings for nodes that were not seen during training.  

▪ Do not incorporate node features: Many graphs have features
that we can and should leverage.

!43

▪ We will now discuss “deeper” methods based on graph neural
networks. 
 

▪ In general, all of encoders can be combined with the similarity
functions that depends on graph structure.

!44

complex function that
depends on graph structure.

From Shallow to Deep

How to Define Node Similarity?

!45

• Key distinction between “shallow” methods is how they
define node similarity.

• E.g., should two nodes have similar embeddings if they….
• are connected?
• share neighbors?
• have similar “structural roles”?
• …?

How to Define Node Similarity?

!46

1. Adjacency-based similarity

2. Multi-hop similarity

3. Random walk approaches

High-level structure and material from:
• Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data

Engineering Bulletin on Graph Systems.

https://arxiv.org/abs/1709.05584

!47

Adjacency-based Similarity

Material based on:
• Ahmed et al. 2013. Distributed Natural Large Scale Graph Factorization. WWW.

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/40839.pdf

Adjacency-based Similarity

!48

• Similarity function is just the edge weight between u and v
in the original network.

• Intuition: Dot products between node embeddings
approximate edge existence.

(weighted) adjacency matrix
for the graph

loss (what we want to
minimize)

sum over all node pairs

embedding similarity

Adjacency-based Similarity

!49

• Find embedding matrix that minimizes the loss
• Option 1: Use stochastic gradient descent (SGD) as a general

optimization method.
• Highly scalable, general approach

• Option 2: Solve matrix decomposition solvers (e.g., SVD).
• Only works in limited cases.

Recap: SVD for Word embedding

!50

Word-
document

matrix

Word
embedding

matrix

Embedding of
Documents

Recap: SVD for Node embedding

!51

Adjacency
Matrix

Node
Embedding

matrix

Edges
Embedding

Recap: Node Similarity is preserved

• Given an Adjacency matrix C, we can get a decomposition C’ from SVD.

!52

=

Matrix factorization

• Matrix factorization algorithms work by decomposing the user-
item interaction matrix into the product of two lower
dimensionality rectangular matrices.

• This family of methods became widely known during
the Netflix prize challenge 2006 due to its effectiveness
in recommender systems..

!53

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Netflix_prize
https://en.wikipedia.org/wiki/Recommender_systems

Adjacency-based Similarity

!54

▪ Drawbacks:
▪ O(|V|2) runtime. (Must consider all node pairs.)
▪Can make O([E|) by only summing over non-zero edges and

using regularization (e.g., Ahmed et al., 2013)
▪ O(|V|) parameters! (One learned vector per node).
▪ Only considers direct, local connections.

e.g., the blue node is obviously more
similar to green compared to red node,
despite none having direct connections.

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/40839.pdf

!55

Multi-hop Similarity

Material based on:
• Cao et al. 2015. GraRep: Learning Graph Representations with Global Structural

Information. CIKM.
• Ou et al. 2016. Asymmetric Transitivity Preserving Graph Embedding. KDD.
• Jian Tang, Meng Qu, Mingzhe Wang, Jun Yan, Ming Zhang and Qiaozhu Mei. LINE:

Large-scale Information Network Embedding . WWW’15

https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512

Multi-hop Similarity

• Idea: Consider k-hop node neighbors.

• E.g., two or three-hop neighbors.

!56

• Red: Target node
• Green: 1-hop neighbors

• A (i.e., adjacency matrix)
• Blue: 2-hop neighbors

• A2
• Purple: 3-hop neighbors

• A3
•

• If gives us the number of walks from node i to node j
after k steps.

!57

Ak

Power of djacency matrix

Power of djacency matrix

• If gives us the number of walks from node i to node j
after k steps.

!58

Ak

Multi-hop Similarity

• Basic idea:

• Train embeddings to predict k-hop neighbors.

!59

Multi-hop Similarity

• Basic idea:

• In practice (GraRep from Cao et al, 2015):

• Use log-transformed, probabilistic adjacency matrix: 
 
 
 

• Train multiple different hop lengths and concatenate output.

!60

constant shiftnode degree

https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512

Multi-hop Similarity

• Another option: Measure overlap between node neighborhoods.

• Example overlap functions:

• Jaccard similarity

!61

• Su,v is the neighborhood overlap between u and v (e.g., Jaccard
overlap).

• This technique is known as HOPE (Yan et al., 2016).

!62

Multi-hop Similarity

embedding similarity
multi-hop network similarity (i.e., any

neighborhood overlap measure)

http://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf
http://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf

Summary

• Basic idea so far:

• 1) Define pairwise node similarities.

• 2) Optimize low-dimensional embeddings to approximate these
pairwise similarities.

• Issues:

• Expensive: Generally O(|V|2), since we need to iterate over all pairs
of nodes.

• Brittle: Must hand-design deterministic node similarity measures.

• Massive parameter space: O(|V|) parameters

!63

!64

Random Walk Approaches

Material based on:
• Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.
• Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

•

https://arxiv.org/pdf/1403.6652.pdf
https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Transition Matrix

!65

Random Walk

!66

Random Walk Embeddings

!67

probability that u
and v co-occur on

a random walk over
the network

recap: Skip-gram model

!68

(recap) word2vec

!69

• Node2vec is similar to word2vec skip-gram model.

• The same way as a document is an ordered sequence of words,
one could sample sequences of nodes from the underlying
network and turn a network into a ordered sequence of nodes.

(recap) word2vec

!70

• word2vec can embed a very specific graphs:

Random Walk Embeddings

!71

1. Estimate probability of visiting node v
on a random walk starting from node
u using some random walk strategy R. 
 
 
 

2. Optimize embeddings to encode these
random walk statistics.

Why Random walks?

1. Expressivity: Flexible stochastic definition of node

similarity that incorporates both local and higher-order

neighborhood information.

2. Efficiency: Do not need to consider all node pairs when

training; only need to consider pairs that co-occur on

random walks.

!72

Random Walk Optimization

1. Run short random walks starting from each node on the
graph using some strategy R. 

2. For each node u collect NR(u), the multiset* of nodes
visited on random walks starting from u.  

3. Optimize embeddings to according to:

!73

* NR(u) can have repeat elements since nodes can be visited multiple times on
random walks.

• Intuition: Optimize embeddings to maximize likelihood of
random walk co-occurrences.

!74

Random Walk Optimization

• Intuition: Optimize embeddings to maximize likelihood of
random walk co-occurrences.

• Parameterize P(v | zu) using softmax:

!75

Random Walk Optimization

• Putting things together:

• Optimizing random walk embeddings = Finding
embeddings zu that minimize L

!76

Random Walk Optimization

• But doing this naively is too expensive!!

!77

Random Walk Optimization

• But doing this naively is too expensive!!

!78

Random Walk Optimization

• But doing this naively is too expensive!!

!79

Random Walk Optimization

Negative Sampling

How we should randomly walk?

!80

• So far we have described how to optimize embeddings given random
walk statistics.

• What strategies should we use to run these random walks?

• Simplest idea: Just run fixed-length, unbiased random walks
starting from each node (i.e., DeepWalk from Perozzi et al., 2013).

• But can we do better?

https://arxiv.org/abs/1403.6652
https://arxiv.org/abs/1403.6652
https://arxiv.org/abs/1403.6652
https://arxiv.org/abs/1403.6652

node2vec: Biased Walks

• Idea: use flexible, biased random walks that can trade off
between local and global views of the network (Grover and
Leskovec, 2016).

!81

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

node2vec: Biased Walks

• Two classic strategies to define a neighborhood of a given
node :

!82

𝑁𝐵𝐹𝑆(𝑢) = { 𝑠1, 𝑠2, 𝑠3}
𝑁𝐷𝐹𝑆(𝑢) = { 𝑠4, 𝑠5, 𝑠6}

Local microscopic view

Global macroscopic view

node2vec sampling strategy

• Node2vec’s sampling strategy, accepts 4 arguments:

• Number of walks: Number of random walks to be generated from each
node in the graph

• Walk length: How many nodes are in each random walk

• P: Return hyperparameter

• q: Inout hyperaprameter (”walk away” hyperaprameter)

and also the standard skip-gram parameters (context window size, number
of iterations etc.)

!83

Biased Random Walks

• Biased 2nd-order random walks explore network neighborhoods:

▪ Random walk started at u and is now at w

▪ Insight: Neighbors of w can only be: 

 

 

Idea: Remember where that walk came from

!84

s1

s2

w

s3

u
Closer to

Same distance to

Farther from

• Walker is at w. Where to go next?

• p, q model transition probabilities

• p … return parameter

• q … ”walk away” parameter

!85

 1/p, 1/q, 1 are
unnormalized 
probabilities

Biased Random Walks

• Walker is at w. Where to go next?

• BFS-like walk: Low value of p

• DFS-like walk: Low value of q

Ns(u) are the nodes visited by the walker

!86

Biased Random Walks

BFS vs. DFS

!87

P q

Experiments: Micro vs. Macro

• Interactions of characters in a novel:

!88

Other random walk ideas

• Different kinds of biased random walks:

• Based on node attributes (Dong et al., 2017).
• Based on a learned weights (Abu-El-Haija et al., 2017)

• Alternative optimization schemes:
• Directly optimize based on 1-hop and 2-hop random walk

probabilities (as in LINE from Tang et al. 2015).
• Network preprocessing techniques:

• Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al.
2016’s HARP).

!89

https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845
https://arxiv.org/abs/1706.07845

Summary

• Basic idea: Embed nodes so that distances in

embedding space reflect node similarities in the original

network.

▪ Different notions of node similarity:

▪ Adjacency-based (i.e., similar if connected)

▪ Multi-hop similarity definitions.

▪ Random walk approaches.

!90

▪ No one method wins in all cases….

▪ e.g., node2vec performs better on node classification while
multi-hop methods performs better on link prediction (Goyal
and Ferrara, 2017 survey).

▪ Random walk approaches are generally more efficient (i.e., O(|E|)
vs. O(|V|2))

▪ In general: Must choose a node similarity that matches
application!

!91

So what method should I use..?

https://arxiv.org/abs/1705.02801
https://arxiv.org/abs/1705.02801
https://arxiv.org/abs/1705.02801

!92

Graph Neural Networks
& 

Graph Convolutional Networks

Thursday!

